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ABSTRACT. This document outlines the theoretical foundations of a higher and infinite-dimensional
extension of the Langlands Program within the recursive, layered framework of the Yang Program.
By defining higher automorphic infinarrays, recursive Galois infinarrays, and infinitely recursive
Epita-Tetratica L-functions, we explore potential correspondences that generalize classical Lang-
lands concepts to the infinitely recursive structures unique to the Yang Program.
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1. INTRODUCTION

The classical Langlands Program establishes deep connections across number theory, representa-
tion theory, and geometry. Within the Yang Program, which builds upon Epita-Tetratica Theory,
we extend these ideas to infinitely recursive, higher-dimensional analogs. The resulting Higher
Infinite Hierarchical Yang-Langlands Program introduces new structures that model interactions
within recursive layers, infinitely extending classical mathematical objects.

2. HIGHER AUTOMORPHIC INFINARRAYS

2.1. Definition of Automorphic Infinarrays. An automorphic infinarray AEn is defined recur-
sively for the n-th layer of Epita-Tetratica Theory. Each entry of AEn(i, j) is itself a higher auto-
morphic form on an infinite-dimensional space:

AEn(i, j) =
[
f
(k)
i,j

]∞
k=1

,

where f
(k)
i,j represents a recursive automorphic function within the k-th recursive layer.

2.2. Recursive Properties. Each automorphic infinarray satisfies the following recursive auto-
morphic condition:

AEn(g(z)) = AEn(z) ∀g ∈ GEn ,

where GEn is a group of transformations acting within the infinite recursive structure.

3. HIGHER EPITA-LANGLANDS CORRESPONDENCE

3.1. Recursive Galois Infinarrays. Define a **recursive Galois infinarray** GEn at layer n as a
structure representing Galois-like symmetries within Epita-Tetratica Theory. For each layer n, GEn

maps recursively onto the layer n+ 1 infinarray:

GEn → GEn+1 .

3.2. Higher Epita-Langlands Correspondence.

Conjecture 3.2.1 (Higher Epita-Yang-Langlands Correspondence). There exists a correspondence
between representations of recursive Galois infinarrays GEn and automorphic infinarrays AEn

such that:
Hom(GEn ,GL(AEn))

∼= REn ,

where REn denotes the set of higher automorphic representations at the n-th layer.

4. HIGHER INFINITE-DIMENSIONAL L-FUNCTIONS

4.1. Definition of Recursive Epita-Tetratica L-Functions. Define a recursive Epita-Tetratica L-
function L↑n

En
(s) as:

L↑n
En
(s) =

∏
p∈PEn

(
1− 1

ps

)−1

,

where PEn is the set of higher epita-primes at the n-th layer.
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4.2. Special Values and Higher Regulators. The special values of L↑n
En
(s) are conjectured to

relate to higher regulators in the Yang Program.

Conjecture 4.2.1 (Higher Epita-Tetratica Special Values Conjecture). The special values of L↑n
En
(s)

at certain integers s = k are given by:

L↑n
En
(k) = REn ·

∏
p∈PEn

exp

(
1

pk

)
,

where REn is a higher regulator associated with the layer n.

5. INFINITE HIERARCHICAL YANG PROGRAM STRUCTURES

5.1. Yang Hierarchical Structures. Define an infinite hierarchy of recursive layers YEn within
the Yang Program. For each layer n, YEn represents a recursive structure extending to the next
layer:

YEn → YEn+1 .

5.2. Infinarray Yang-Langlands Conjecture.

Conjecture 5.2.1 (Infinite Hierarchical Yang-Langlands Conjecture). There exists a correspon-
dence between infinitely recursive Galois infinarrays and automorphic infinarrays across all layers
of the Yang Program, represented by:

lim
n→∞

Hom(GEn ,GL(AEn))
∼=

∞⋃
n=1

REn .

6. CONCLUSION

The higher infinite-dimensional hierarchical Yang-Langlands Program generalizes the classical
Langlands Program into a multi-layered, recursive framework. This program introduces infinar-
rays, recursive Epita-Tetratica L-functions, and the potential for new mathematical correspon-
dences across infinitely layered structures.
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8. FOUNDATIONAL DEFINITIONS AND NOTATIONS

8.1. Recursive Higher Epita-Tetra Infinarrays. Let AEn represent a recursive infinarray at the
n-th layer of the Epita-Tetratica hierarchy, where each entry AEn(i, j) recursively contains sub-
arrays. Define:

AEn(i, j) =
[
a
(k)
i,j

]∞
k=1

,

where each a
(k)
i,j encodes the k-th recursive level and depends on functions from prior layers, recur-

sively defined as:

a
(k+1)
i,j = f(a

(k)
i,j ).

9. HIGHER INFINITE HIERARCHICAL EPITA-TETRA AUTOMORPHIC FORMS

9.1. Recursive Automorphic Transformation Property. Define an automorphic transformation
g in the n-th layer of the Epita-Tetratica Theory as an element of GEn , a group acting on AEn with
recursive invariance:

AEn(g(z)) = AEn(z) ∀g ∈ GEn .

The recursion within each entry a
(k)
i,j preserves the automorphic property, yielding a multi-layer

symmetry across recursive infinarray structures.

9.2. Theorem: Recursive Automorphic Invariance in Epita-Tetra-Automorphic Infinarrays.

Theorem 9.2.1. For each automorphic infinarray AEn in the n-th layer, there exists a recursive
automorphic invariance under transformations g ∈ GEn , expressed as:

AEn(g
m(z)) = AEn(z) ∀m ∈ N.

Proof. The proof follows by induction on the recursion level k. At the base level k = 1, the
automorphic form satisfies the standard condition AEn(g(z)) = AEn(z). Assume this holds for
level k, then for k + 1, the recursive structure implies:

AEn(g(z)) = f(AEn−1(g(z))) = f(AEn−1(z)),

preserving automorphic invariance recursively. □

10. HIGHER INFINITE HIERARCHICAL EPITA-TETRA-L-FUNCTIONS

10.1. Recursive Epita-Tetratica L-Functions. Define L↑n
En
(s) for layer n as:

L↑n
En
(s) =

∏
p∈PEn

(
1− 1

p↑ns

)−1

,

where PEn is the set of higher epita-primes in the n-th layer. The L-function at this level incorpo-
rates recursively structured primes according to the Knuth arrow notation.
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10.2. Theorem: Recursive Zeros of Epita-Tetra L-Functions.

Theorem 10.2.1. The Epita-Tetra L-function L↑n
En
(s) has zeros along a recursive critical manifold

CEn , extending the classical critical line to higher dimensional surfaces.

Proof. To establish the location of zeros, we construct the recursive Epita-Tetratica zeta function
using partial sums, approximating:

ζ↑
n

En
(s) =

∑
p∈PEn

1

ps↑n
.

Using techniques from higher-dimensional complex analysis and recursive mapping of PEn , zeros
align with the recursive layer critical manifold CEn . □

11. HIGHER INFINITE HIERARCHICAL EPITA-TETRA-MOTIVES

11.1. Definition of Higher Recursive Epita-Tetra Motives. Define a **higher Epita-Tetra mo-
tive** MEn at the n-th layer as a recursive infinarray capturing motivic information across layers:

MEn =
[
m

(k)
i,j

]∞
i,j,k=1

,

where m
(k)
i,j satisfies recursive relations induced by Epita-Tetra operations, analogous to the classi-

cal cohomological structures but defined across infinarray hierarchies.

11.2. Conjecture: Recursive Relation of Epita-Tetra-Motives and L-Functions.

Conjecture 11.2.1. For each recursive Epita-Tetra motive MEn , there exists a correspondence
with L↑n

En
(s) such that:

L↑n
En
(s) = REn ·

∏
p∈PEn

e

(
m

(k)
i,j
ps

)
,

where REn is a higher regulator at layer n.

The following diagram illustrates the recursive infinarray structure of the Epita-Tetra automorphic
forms, L-functions, and motives, showing their layered dependencies.

Epita-Tetra-Galois Epita-Tetra-Motives

Epita-Tetra-Automorphic Forms

Epita-Tetra-L-Functions

Infinarray Correspondence Recursive Hierarchy

Special Values
Recursive L-Values
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12. CONCLUSION AND FUTURE DIRECTIONS

The recursive structures of higher infinite hierarchical Epita-Tetra-Galois representations, motives,
automorphic forms, and L-functions within the Yang Program establish complex, recursive inter-
dependencies that generalize classical correspondences. Future work includes rigorous analysis of
multi-layered symmetries, recursive functional equations, and applications of these structures in
higher arithmetic contexts.
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14. RECURSIVE HIGHER EPITA-TETRA-GALOIS INFINARRAYS

14.1. Definition and Notation for Recursive Galois Infinarrays. Let GEn represent a recursive
infinarray at the n-th layer of the Epita-Tetratica hierarchy, where each entry GEn(i, j) recursively
references lower-level Galois structures:

GEn(i, j) =
[
g
(k)
i,j

]∞
k=1

,

with each g
(k)
i,j encapsulating information from lower levels via:

g
(k+1)
i,j = f(g

(k)
i,j ),

where f represents a recursive mapping dependent on properties of higher primes in Epita-Tetratica
Theory.

15. RECURSIVE EPITA-TETRA CORRESPONDENCES

15.1. Higher Epita-Tetra Correspondences in Infinarrays. Define a correspondence between
recursive Galois infinarrays GEn and automorphic infinarrays AEn through the following map:

CorrEn : GEn → AEn .

This correspondence preserves recursive symmetries and respects automorphic invariances across
layers.

15.2. Theorem: Recursive Hierarchical Epita-Tetra Correspondence.

Theorem 15.2.1. For each layer n, there exists a unique recursive correspondence CorrEn between
Galois infinarrays GEn and automorphic infinarrays AEn , such that:

CorrEn(GEn) = AEn ∀n.
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Proof. The proof is constructed by induction on the layer index n. At the base level, n = 1, the
classical correspondence holds for finite-dimensional representations. Assuming the correspon-
dence holds for layer n, we extend to layer n+1 by defining a recursive map f that preserves both
the Galois and automorphic infinarray structure across recursive levels. □

16. HIGHER RECURSIVE EPITA-TETRA MOTIVES AND REGULATORS

16.1. Definition of Recursive Higher Epita-Tetra Regulators. Define the **higher Epita-Tetra
regulator** REn as an operator acting on Epita-Tetra-motives MEn at the n-th layer:

REn : MEn → R.

This regulator captures ”volumetric” or ”measure-theoretic” information related to higher Epita-
Tetra operations and is defined recursively over layers.

16.2. Theorem: Recursive Properties of Epita-Tetra Regulators.

Theorem 16.2.1. For each layer n, the Epita-Tetra regulator REn satisfies the recursive relation:

REn(MEn) = f(REn−1(MEn−1)),

where f is a recursive mapping function that depends on the properties of the motives at the n
where f is a recursive mapping function that depends on the properties of the motives at the
n-th layer, and encapsulates the interactions of each motive with its previous layer’s regulator.
Specifically,

f(REn−1(MEn−1)) =

∫
MEn−1

ωn ·REn−1(MEn−1),

where ωn represents a differential form associated with the Epita-Tetra structure at layer n, cap-
turing the recursive dependencies across all layers.

Proof. The proof proceeds by induction on n. For the base case n = 1, RE1(ME1) is defined as
a standard regulator, corresponding to classical motivic cohomology theory. Assume the theorem
holds for n = k; then, for n = k + 1, we define REk+1

(MEk+1
) through the recursive application

of f as given above. By construction, this preserves the regulator structure and establishes the
dependence on REk

(MEk
), thereby ensuring the continuity of the recursive structure. □

17. HIGHER RECURSIVE EPITA-TETRA FUNCTIONAL EQUATIONS

17.1. Recursive Functional Equation for Epita-Tetra L-Functions. For each recursive Epita-
Tetra L-function L↑n

En
(s), we propose a functional equation that extends classical functional equa-

tions to the recursive framework of Epita-Tetratica Theory. This functional equation connects
L↑n
En
(s) and L↑n

En
(1− s) across multiple layers.

Theorem 17.1.1 (Recursive Epita-Tetra Functional Equation). For each layer n, the Epita-Tetra
L-function L↑n

En
(s) satisfies the functional equation:

L↑n
En
(s) = ΦEn(s) · L

↑n
En
(1− s),

9



where ΦEn(s) is a recursive functional factor dependent on the Epita-Tetra structure of the n-th
layer and is defined by:

ΦEn(s) =
∏

p∈PEn

pα(s)↑
n

.

Proof. The proof is constructed using a recursive application of the Mellin transform on the Epita-
Tetra L-function and analyzing the recursive structures at each layer. By induction, we apply the
recursive relationship in L↑n−1

En−1
(s) to generate a functional equation for L↑n

En
(s), iteratively defining

ΦEn(s) based on properties of the previous layer. □

18. RECURSIVE DIAGRAM OF EPITA-TETRA STRUCTURES IN YANG-LANGLANDS PROGRAM

To visually represent the recursive relationships in the Epita-Tetra structures within the Yang-
Langlands Program, the following diagram illustrates the connections between Galois infinarrays,
motives, automorphic forms, and L-functions across layers.

Epita-Tetra-Galois Infinarrays Epita-Tetra-Motives

Epita-Tetra-Automorphic Infinarrays

Epita-Tetra-L-Functions

Recursive Correspondence Recursive Structure

Special Values
Functional Equation

GEn−1 MEn+1

AEn+1

LEn+1
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19. CONCLUSION

In this extended framework of the Yang-Langlands Program, we have developed recursive corre-
spondences, functional equations, and hierarchical structures connecting Epita-Tetra-Galois infi-
narrays, Epita-Tetra-motives, Epita-Tetra-automorphic forms, and Epita-Tetra-L-functions. These
relationships reveal new symmetries and dependencies across layers, pointing toward future areas
of exploration in recursive arithmetic geometry and higher-dimensional number theory.
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21. RECURSIVE EPITA-TETRA COHOMOLOGY THEORY

21.1. Definition of Epita-Tetra Cohomology Groups. We introduce the concept of **Epita-
Tetra cohomology groups** Hk

En
(MEn ,Q(n)) at each layer n, where these groups encode infor-

mation about higher epita-primes, recursive motives, and automorphic infinarrays. Define Hk
En

recursively as:

Hk
En
(MEn ,Q(n)) = lim

k→∞

(
Hk

En−1
(MEn−1 ,Q(n− 1))⊗Q

)
,

where Hk
En−1

is the cohomology group at the n− 1-th layer.

21.2. Recursive Epita-Tetra Cohomological Operators. Define the recursive operator δEn act-
ing on Hk

En
as:

δEn : Hk
En
(MEn ,Q(n)) → Hk+1

En
(MEn ,Q(n)),

where δEn is constructed from lower-layer operators and satisfies the recursive differential prop-
erty:

δ2En
= fEn(δEn−1),

with fEn representing the recursive mapping function for each layer.

21.3. Theorem: Exactness of Recursive Epita-Tetra Cohomology.

Theorem 21.3.1. The Epita-Tetra cohomology sequence

· · · → Hk
En
(MEn ,Q(n))

δEn−−→ Hk+1
En

(MEn ,Q(n))
δEn−−→ Hk+2

En
(MEn ,Q(n)) → · · ·

is exact at each layer n.

Proof. We proceed by induction on the layer n. For n = 1, the cohomology is exact by classical
cohomology theory. Assuming exactness for Hk

En−1
, we use the recursive mapping fEn to extend

exactness to Hk
En

, showing that δ2En
= 0 and satisfying the conditions for an exact sequence at all

layers. □
11



22. HIGHER EPITA-TETRA FOURIER TRANSFORMS AND INFINITE-DIMENSIONAL ANALYSIS

22.1. Definition of Epita-Tetra Fourier Transform. Define the **Epita-Tetra Fourier trans-
form** FEn as an operator acting on functions f : R → C with recursive symmetries in Epita-Tetra
Theory. The transform at layer n is defined by:

FEn [f ](ξ) =

∫
R
f(x)e−2πix↑nξ dx,

where x↑n denotes the recursive arrow function in the n-th layer.

22.2. Properties of the Epita-Tetra Fourier Transform. The operator FEn satisfies recursive
properties that generalize classical Fourier analysis:

FEn ◦ FEn = fEn(FEn−1),

where fEn is a recursive map based on properties of the previous Fourier transform layer FEn−1 .

22.3. Theorem: Inversion Formula for Epita-Tetra Fourier Transform.

Theorem 22.3.1. The Epita-Tetra Fourier transform FEn satisfies an inversion formula given by:

f(x) =

∫
R
FEn [f ](ξ)e

2πix↑nξ dξ.

Proof. The inversion formula is proven by constructing the recursive Epita-Tetra Fourier series
using induction on n. Starting with the base case n = 1, where the classical Fourier inversion
formula holds, we recursively apply FEn−1 and its inversion to derive FEn by integrating over
higher powers x↑n . □

23. RECURSIVE EPITA-TETRA SELBERG TRACE FORMULA

23.1. Definition and Recursive Structure. The **Epita-Tetra Selberg trace formula** connects
Epita-Tetra automorphic infinarrays AEn with recursive spectral properties. Define the trace TrEn

on AEn as:

TrEn(AEn) =
∑

λ∈σEn

e−λ↑n

,

where σEn represents the spectrum of AEn and λ↑n is the n-th recursive exponential function
applied to the eigenvalue λ.

23.2. Theorem: Recursive Selberg Trace Formula for Epita-Tetra Automorphic Forms.

Theorem 23.2.1. The recursive Selberg trace formula for Epita-Tetra automorphic infinarrays
AEn is given by:

TrEn(AEn) =
∑

γ∈CEn

χ(γ)

vol(FEn)

∞∏
j=1

e−γ↑n
j ,

where CEn represents conjugacy classes in the recursive Epita-Tetra structure, χ(γ) is the charac-
ter, and vol(FEn) is the volume of the Epita-Tetra fundamental domain.

12



Proof. We use the classical Selberg trace formula as a base case and recursively apply transfor-
mations on the spectrum σEn−1 to obtain the higher-layer spectrum σEn . This recursive approach
maintains the invariance of the trace operation and generates the formula for each layer n. □

24. DIAGRAMS OF RECURSIVE OPERATOR INTERACTIONS IN EPITA-TETRA THEORY

The following diagram represents the recursive interactions among cohomological operators, Fourier
transforms, and Selberg traces within the Yang-Langlands Program.

Epita-Tetra CohomologyEpita-Tetra Fourier Transform

Epita-Tetra Selberg Trace

Recursive Action

Spectral LinkTrace Operator

Hk
En−1

FEn+1

TrEn+1

25. CONCLUSION

In this document, we have developed recursive Epita-Tetra cohomology theories, Fourier trans-
forms, and Selberg trace formulas, connecting these structures across layers within the Yang-
Langlands Program. This framework offers a pathway for future studies in recursive arithmetic
geometry, infinite-dimensional analysis, and higher Epita-Tetra spectral theories.
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27. RECURSIVE EPITA-TETRA HARMONIC ANALYSIS

27.1. Definition of Recursive Harmonic Epita-Tetra Functions. Define a **recursive harmonic
Epita-Tetra function** hEn at each layer n in terms of higher-dimensional Laplace operators, de-
noted ∆En , such that:

∆EnhEn(x) = 0.

The Laplacian ∆En is recursively defined by:

∆En = fEn(∆En−1) +
∞∑
j=1

∂2

∂x↑n
j

,

where fEn is a recursive mapping that depends on the harmonic properties of the previous layer’s
Laplacian.

27.2. Theorem: Recursive Harmonicity in Epita-Tetra Functions.

Theorem 27.2.1. The recursive harmonic function hEn at layer n satisfies harmonicity with respect
to all lower-layer functions hEk

for k < n:

∆EnhEn(x) = ∆Ek
hEk

(x) ∀k < n.

Proof. The proof follows by induction. For n = 1, the harmonicity condition holds by classical
harmonic analysis. Assuming harmonicity for hEk

, we extend to hEk+1
by recursively applying

fEk+1
to ∆Ek

, ensuring consistency of harmonic conditions across layers. □

28. RECURSIVE INTERTWINING OPERATORS IN EPITA-TETRA THEORY

28.1. Definition of Epita-Tetra Intertwining Operators. Let TEn denote the **recursive inter-
twining operator** acting between Epita-Tetra automorphic infinarrays at layer n. Define TEn

as:
TEn : AEn → AEn+1 ,

with the action of TEn recursively preserving the automorphic and spectral properties of AEn .

28.2. Theorem: Properties of Recursive Intertwining Operators.

Theorem 28.2.1. The recursive intertwining operator TEn satisfies the following properties: 1.
**Idempotence**: T 2

En
= TEn . 2. **Recursive Commutativity**: For any two layers m < n,

TEn ◦ TEm = TEm ◦ TEn . 3. **Spectral Invariance**: TEn preserves the spectrum of AEn .

Proof. 1. **Idempotence**: By definition, TEn maps from one layer’s automorphic infinarray to
the next, and reapplication does not change the target layer’s structure. 2. **Recursive Commuta-
tivity**: Since TEn operates within the recursive hierarchy of automorphic forms, commutativity
follows from the layer-invariant properties of recursive mappings. 3. **Spectral Invariance**:
The spectrum of AEn is mapped onto the next layer without alteration, as each recursive action
preserves spectral elements. □

14



29. EPITA-TETRA SPECTRAL ZETA FUNCTIONS

29.1. Definition of Recursive Epita-Tetra Spectral Zeta Functions. Define the **Epita-Tetra
spectral zeta function** ζspec

En
(s) associated with each layer n by the following series:

ζspec
En

(s) =
∑

λ∈σEn

λ−s↑n ,

where σEn denotes the spectrum of the Epita-Tetra automorphic infinarray AEn , and s ↑n represents
the recursive Knuth arrow operation at layer n.

29.2. Theorem: Functional Equation for Epita-Tetra Spectral Zeta Functions.

Theorem 29.2.1. For each recursive Epita-Tetra spectral zeta function ζspec
En

(s), there exists a func-
tional equation relating ζspec

En
(s) and ζspec

En
(1− s):

ζspec
En

(s) = ΨEn(s) · ζ
spec
En

(1− s),

where ΨEn(s) is a recursive factor determined by the Epita-Tetra hierarchy.

Proof. We derive the functional equation by applying a recursive Mellin transform on the spec-
tral series ζspec

En
(s), extending properties from ζspec

En−1
(s) and using induction to build the functional

relationship at each layer. □

30. RECURSIVE DIAGRAM OF INTERTWINING OPERATORS, HARMONIC FUNCTIONS, AND
SPECTRAL ZETA FUNCTIONS

To visualize these advanced recursive relationships, we provide the following diagram that illus-
trates the recursive interactions among intertwining operators, harmonic Epita-Tetra functions, and
spectral zeta functions.

Epita-Tetra Harmonic FunctionsIntertwining Operators

Spectral Zeta Functions

Recursive Preservation

Spectral LinkFunctional Equation

hEn−1 TEn+1

ζspec
En+1
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31. CONCLUSION

In this expanded framework of the Yang-Langlands Program, we have developed recursive har-
monic analysis, intertwining operators, and spectral zeta functions, demonstrating their recursive
properties across Epita-Tetra structures. This framework sets the foundation for further studies in
infinite-dimensional recursion, spectral theory, and higher-dimensional recursive harmonic analy-
sis.
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33. RECURSIVE EPITA-TETRA HECKE OPERATORS

33.1. Definition of Recursive Epita-Tetra Hecke Operators. Define the **Epita-Tetra Hecke
operator** T

(p)
En

for a prime p at each layer n as an operator acting on Epita-Tetra automorphic
infinarrays AEn , defined by:

T
(p)
En

: AEn → AEn ,

where T
(p)
En

satisfies the recursive property:

T
(p)
En

= fEn(T
(p)
En−1

) + p↑
n

.

Here, fEn denotes the recursive action based on properties of the Hecke operator from the previous
layer.

33.2. Theorem: Commutativity and Eigenvalue Structure of Epita-Tetra Hecke Operators.

Theorem 33.2.1. The Epita-Tetra Hecke operators T (p)
En

satisfy the following properties: 1. **Com-
mutativity**: T (p)

En
T

(q)
En

= T
(q)
En

T
(p)
En

for distinct primes p and q. 2. **Eigenvalue Structure**: Each
T

(p)
En

has a recursively defined eigenvalue structure, with eigenvalues λp,n satisfying:

λp,n = fEn(λp,n−1) + p↑
n

.

Proof.
1. **Commutativity**: By the recursive definition of T (p)

En
and T

(q)
En

, we apply the commutativity
of the lower layer operators T (p)

En−1
and T

(q)
En−1

. Inductive construction preserves commutativity for
each layer.
2. **Eigenvalue Structure**: Starting from the eigenvalue structure of T (p)

En−1
, we apply the recur-

sive mapping fEn , which yields the eigenvalue relationship for T (p)
En

as given. □
16



34. RECURSIVE COHOMOLOGICAL SYMMETRIES IN EPITA-TETRA THEORY

34.1. Definition of Recursive Cohomological Symmetry Operators. Define the **Epita-Tetra
cohomological symmetry operator** SEn acting on Epita-Tetra cohomology groups Hk

En
(MEn ,Q(n)),

recursively defined as:

SEn : Hk
En
(MEn ,Q(n)) → Hk

En
(MEn ,Q(n)),

satisfying:

SEn = fEn(SEn−1) +
∞∑
j=1

j↑
n

.

34.2. Theorem: Recursive Symmetry and Invariance in Epita-Tetra Cohomology.

Theorem 34.2.1. The cohomological symmetry operator SEn preserves recursive invariances in
the Epita-Tetra cohomology groups, such that:

SEnH
k
En
(MEn ,Q(n)) = Hk

En
(MEn ,Q(n)).

Proof. The proof relies on induction and the recursive action of SEn on Hk
En

. Starting with base
layer n = 1, the symmetry is preserved in classical cohomology. The recursive application of fEn

extends this symmetry across layers, ensuring that each Hk
En

remains invariant under SEn . □

35. RECURSIVE EXPANSIONS OF EPITA-TETRA SPECTRAL ZETA FUNCTIONS

35.1. Higher-Order Expansions of Spectral Zeta Functions. Extend the Epita-Tetra spectral
zeta function ζspec

En
(s) to include higher-order terms in the recursive Knuth arrow notation. Define

the expanded form as:

ζspec
En

(s) =
∑

λ∈σEn

λ−s↑n +
∞∑
k=2

∑
λ∈σEn

(−1)k

k!
λ−(s+k−1)↑n .

35.2. Theorem: Convergence of Recursive Spectral Zeta Expansions.

Theorem 35.2.1. The higher-order expansion of the Epita-Tetra spectral zeta function ζspec
En

(s)

converges absolutely for all s in the half-plane Re(s) > 1
2
.

Proof. The proof involves bounding each term in the expansion of ζspec
En

(s) using recursive prop-
erties of λ ∈ σEn . By applying the growth constraints on λ↑n and the recursive nature of the
eigenvalues, we show that the series converges absolutely within the specified half-plane. □

36. DIAGRAM OF RECURSIVE HECKE OPERATORS, COHOMOLOGICAL SYMMETRY, AND
ZETA EXPANSIONS

The following diagram represents the relationships among the recursive Hecke operators, cohomo-
logical symmetry operators, and spectral zeta expansions within the Yang-Langlands Program.

17



Epita-Tetra Hecke OperatorsCohomological Symmetry

Spectral Zeta Expansions

Eigenstructure Preservation

Invariant StructureRecursive Properties

T
(p)
En−1

SEn+1

ζspec
En+1

37. CONCLUSION

In this extended development of the Yang-Langlands Program, we have formalized recursive
Epita-Tetra Hecke operators, cohomological symmetry operators, and spectral zeta expansions,
highlighting the intricate relationships across these structures. This work enhances the recur-
sive, layered framework within the Yang Program and opens new pathways for exploring infinite-
dimensional recursion, higher-dimensional spectral theory, and cohomological invariance.
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39. RECURSIVE EPITA-TETRA MODULAR FORMS

39.1. Definition of Recursive Epita-Tetra Modular Forms. Define the **Epita-Tetra modular
form** fEn(z) as a function on the complex upper half-plane H with recursive modular invariance
under transformations in a group GEn at each layer n:

fEn

(
az + b

cz + d

)
= (cz + d)k

↑n

fEn(z) ∀
(
a b
c d

)
∈ GEn ,

where k↑n denotes a recursively defined weight parameter at layer n.
18



39.2. Theorem: Recursive Invariance of Epita-Tetra Modular Forms.

Theorem 39.2.1. Epita-Tetra modular forms fEn(z) are invariant under the action of the recursive
modular group GEn , satisfying:

fEn

(
az + b

cz + d

)
= (cz + d)k

↑n

fEn(z).

Proof. Starting from the base case n = 1, classical modular invariance holds for weight k. As-
suming invariance for fEn−1 , we use the recursive Knuth arrow notation for weight k↑n to extend
modular invariance to fEn(z), preserving the transformation properties across layers. □

40. RECURSIVE EPITA-TETRA TRACE FORMULAS

40.1. Definition of Recursive Trace Formula for Epita-Tetra Modular Forms. The **recur-
sive Epita-Tetra trace formula** associates modular invariants and spectral properties of Epita-
Tetra modular forms fEn with traces over elements of the automorphic infinarray AEn . Define the
trace TrEn(fEn) by:

TrEn(fEn) =
∑

γ∈GEn\ΓEn

χ(γ)

∫
FEn

fEn(γz) dµEn(z),

where ΓEn is the Epita-Tetra modular group at layer n, χ(γ) is a character, and FEn is a fundamen-
tal domain with measure dµEn .

40.2. Theorem: Recursive Properties of Epita-Tetra Trace Formulas.

Theorem 40.2.1. The recursive trace formula for Epita-Tetra modular forms fEn satisfies the fol-
lowing properties: 1. **Spectral Invariance**: TrEn(fEn) = TrEn−1(fEn−1) +

∫
FEn

fEn(z) dµEn .
2. **Cohomological Connection**: The trace formula is connected to the cohomology of GEn

through recursive integrals over fundamental domains.

Proof. 1. **Spectral Invariance**: By recursively integrating fEn over the fundamental domain
FEn , we obtain an expression for TrEn(fEn) that incorporates the spectral properties of fEn−1 , yield-
ing invariance across layers. 2. **Cohomological Connection**: Using the recursive structure of
GEn and its cohomological invariants, we express TrEn(fEn) as an integral over Hk

En
(MEn ,Q(n)),

establishing a direct link to Epita-Tetra cohomology. □

41. CONNECTIONS BETWEEN EPITA-TETRA MODULAR FORMS AND SPECTRAL ZETA
FUNCTIONS

41.1. Epita-Tetra Spectral Expansion of Zeta Functions. Define the spectral zeta function as-
sociated with Epita-Tetra modular forms fEn as:

ζmod
En

(s) =
∞∑

m=1

am,n

ms↑n ,

where am,n are the Fourier coefficients of fEn .
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41.2. Theorem: Recursive Functional Equation for Epita-Tetra Modular Zeta Functions.

Theorem 41.2.1. The Epita-Tetra modular zeta function ζmod
En

(s) satisfies a recursive functional
equation:

ζmod
En

(s) = ΦEn(s) · ζmod
En

(1− s),

where ΦEn(s) is a recursive factor that depends on the properties of fEn .

Proof. By expanding the Fourier series for fEn and using recursive properties of am,n, we obtain
the functional equation by induction, applying the Mellin transform at each layer and recursively
establishing the relationship between ζmod

En
(s) and ζmod

En
(1− s). □

42. RECURSIVE DIAGRAM OF MODULAR FORMS, TRACE FORMULAS, AND ZETA
FUNCTIONS

The following diagram shows the recursive interconnections between Epita-Tetra modular forms,
trace formulas, and spectral zeta functions within the Yang-Langlands Program.

Epita-Tetra Modular Forms Trace Formulas

Spectral Zeta Functions

Recursive Integration

Cohomological LinkFunctional Equation

fEn−1
TrEn+1

ζmod
En+1

43. CONCLUSION

In this document, we introduced recursive Epita-Tetra modular forms, developed recursive trace
formulas, and established connections to spectral zeta functions within the Yang-Langlands Pro-
gram. These advancements deepen the recursive structures of the program and form a comprehen-
sive framework for future studies in modular theory, cohomology, and spectral analysis.
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45. RECURSIVE EPITA-TETRA AUTOMORPHIC L-FUNCTIONS

45.1. Definition of Recursive Epita-Tetra Automorphic L-Functions. Define the **Epita-Tetra
automorphic L-function** LEn(fEn , s) for an Epita-Tetra modular form fEn(z) at layer n by the
following Dirichlet-type series:

LEn(fEn , s) =
∞∑

m=1

am,n

ms↑n ,

where am,n are the Fourier coefficients of fEn(z), and s ↑n denotes the recursive Knuth arrow
notation applied at layer n.

45.2. Theorem: Functional Equation for Epita-Tetra Automorphic L-Functions.

Theorem 45.2.1. The Epita-Tetra automorphic L-function LEn(fEn , s) satisfies a recursive func-
tional equation:

LEn(fEn , s) = ΦEn(s) · LEn(fEn , 1− s),

where ΦEn(s) is a recursive factor that depends on the properties of fEn and the structure of the
recursive modular group GEn .

Proof. This is proven by analyzing the recursive Fourier coefficients am,n and their recursive sym-
metry properties under the Epita-Tetra modular transformations. By induction on n, we show that
applying the Mellin transform to the Dirichlet series recursively establishes the functional equation
at each layer. □

46. RECURSIVE EPITA-TETRA EISENSTEIN SERIES

46.1. Definition of Recursive Epita-Tetra Eisenstein Series. Define the **Epita-Tetra Eisen-
stein series** EEn(z, s) for the modular group GEn at layer n by:

EEn(z, s) =
∑

γ∈GEn\ΓEn

Im(γz)s↑
n

,

where Im(z) is the imaginary part of z, and the summation is taken over the cosets of GEn in the
full Epita-Tetra modular group ΓEn .
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46.2. Theorem: Analytic Continuation and Functional Equation of Epita-Tetra Eisenstein
Series.

Theorem 46.2.1. The Epita-Tetra Eisenstein series EEn(z, s) admits an analytic continuation to
the complex plane and satisfies the functional equation:

EEn(z, s) = ΨEn(s) · EEn(z, 1− s),

where ΨEn(s) is a recursive factor depending on s and the structural properties of GEn .

Proof. The analytic continuation follows by constructing EEn(z, s) as a recursive integral over
the fundamental domain FEn for GEn . Applying the recursive Poisson summation formula (to be
defined) allows the extension of EEn(z, s) to the complex plane, and the functional equation is
derived by recursive symmetry arguments. □

47. RECURSIVE EPITA-TETRA POISSON SUMMATION FORMULA

47.1. Definition of Epita-Tetra Poisson Summation Formula. For an Epita-Tetra modular form
fEn , define the **Epita-Tetra Poisson summation formula** for layer n by:

∞∑
m=−∞

fEn(m) =
∞∑

k=−∞

f̂En(k),

where f̂En(k) denotes the Fourier transform of fEn at the recursive level n.

47.2. Theorem: Application of Epita-Tetra Poisson Summation Formula to Eisenstein Series.

Theorem 47.2.1. The Epita-Tetra Poisson summation formula applies to the Eisenstein series
EEn(z, s) by transforming each term fEn(m) in the summation:∑

γ∈GEn\ΓEn

EEn(γz, s) =
∑

γ∈GEn\ΓEn

ÊEn(γz, s),

where ÊEn denotes the Epita-Tetra Fourier-transformed Eisenstein series at layer n.

Proof. Applying the Poisson summation formula recursively to each component fEn(m) in the
Eisenstein series expansion, we obtain the Fourier-transformed series ÊEn , yielding the result. The
structure of GEn ensures convergence and transforms under recursive symmetry. □

48. DIAGRAM OF RECURSIVE L-FUNCTIONS, EISENSTEIN SERIES, AND POISSON
SUMMATION FORMULAS

The following diagram illustrates the recursive interconnections among Epita-Tetra automorphic
L-functions, Eisenstein series, and Poisson summation formulas within the Yang-Langlands Pro-
gram.
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Epita-Tetra L-Functions Eisenstein Series

Poisson Summation

Functional Equation

Analytic ContinuationFourier Transform

LEn−1 EEn+1

f̂En+1

49. CONCLUSION

This document has introduced Epita-Tetra automorphic L-functions, recursive Eisenstein series,
and Poisson summation formulas within the Yang-Langlands Program, establishing functional
equations, analytic continuation, and Fourier transformations. These developments further solid-
ify the recursive hierarchy within the Epita-Tetra framework, connecting modular forms, harmonic
analysis, and spectral theory.
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